题目内容

已知抛物线方程为y2=2px(p>0),直线l:x+y=m过抛物线的焦点且被抛物线截得的弦长为3,求p的值.
分析:由于直线l:x+y=m过抛物线的焦点,得到直线l的方程,再将l的方程代入抛物线方程y2=2px,得y2+2py-p2=0;
设A(x1,y1),B(x2,y2),由根与系数的关系得y1+y2,y1y2;再由弦长公式|AB|=x1+x2+p,可求得|AB|=4p=3,从而求得p的值.
解答:解:由直线l过抛物线的焦点F(
p
2
,0)
,得直线l的方程为x+y=
p
2

x+y=
p
2
y2=2px
消去,得y2+2py-p2=0.
由题意得△=(2p)2+4p2>0,y1+y2=-2p,y1y2=-p2
设直线与抛物线交于A(x1,y1),B(x2,y2),
|AB|=x1+x2+p=
p
2
-y1+
p
2
-y2+p=2p-(y1+y2)=4p

解得p=
3
4

故p的值为
3
4
点评:本题考查了抛物线的几何性质以及弦长公式的应用,也考查了一定的计算能力,解题时要灵活运用公式,正确解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网