题目内容
已知数列{an}的前n项和为Sn,a1=-| 2 | 3 |
(I)计算S1,S2,S3,S4,猜想Sn的表达式;
(II)并用数学归纳法证明.
分析:(I)由题设可得得 Sn-1Sn+2Sn+1=0,求得S1,S2,S3 的值,猜测 Sn =-
,
(II)猜想Sn =-
,n∈N+,用数学归纳法证明,检验n=1时,猜想成立;假设SK=-
,则当n=k+1时,由条件可得,SK+1+
=SK+1-SK-2,解出 SK+1=-
,故n=k+1时,猜想仍然成立.
| n+1 |
| n+2 |
(II)猜想Sn =-
| n+1 |
| n+2 |
| K+1 |
| K+2 |
| 1 |
| SK+1 |
| K+2 |
| K+3 |
解答:解:(I)由题设Sn2+2Sn+1-anSn=0,当n≥2(n∈N*)时,an=Sn-Sn-1,
代入上式,得Sn-1Sn+2Sn+1=0.(*)
S1=a1=-
,∵Sn+
=an-2(n≥2,n∈N),令n=2可得
,S2+
=a2-2=S2-a1-2,∴
=
-2,∴S2=-
.
同理可求得 S3=-
,S4=-
.
(II)猜想Sn =-
,n∈N+,下边用数学归纳法证明:
①当n=1时,S1=a1=-
,猜想成立.
②假设当n=k时猜想成立,即SK=-
,则当n=k+1时,∵Sn+
=an-2,∴SK+1+
=ak+1-2,
∴SK+1+
=SK+1-SK-2,∴
=
-2=
,
∴SK+1=-
,∴当n=k+1时,猜想仍然成立.
综合①②可得,猜想对任意正整数都成立,即 Sn =-
,n∈N+成立.
代入上式,得Sn-1Sn+2Sn+1=0.(*)
S1=a1=-
| 2 |
| 3 |
| 1 |
| Sn |
,S2+
| 1 |
| S2 |
| 1 |
| S2 |
| 2 |
| 3 |
| 3 |
| 4 |
同理可求得 S3=-
| 4 |
| 5 |
| 5 |
| 6 |
(II)猜想Sn =-
| n+1 |
| n+2 |
①当n=1时,S1=a1=-
| 2 |
| 3 |
②假设当n=k时猜想成立,即SK=-
| K+1 |
| K+2 |
| 1 |
| Sn |
| 1 |
| SK+1 |
∴SK+1+
| 1 |
| SK+1 |
| 1 |
| SK+1 |
| K+1 |
| K+2 |
| -K-3 |
| K+2 |
∴SK+1=-
| K+2 |
| K+3 |
综合①②可得,猜想对任意正整数都成立,即 Sn =-
| n+1 |
| n+2 |
点评:本题考查归纳推理,用数学归纳法证明等式,证明当n=k+1时,Sn =-
,n∈N+,是解题的难点.
| n+1 |
| n+2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |