题目内容
下列命题正确的是( )
A.函数y=sin(2x+
| ||||||
| B.函数y=cos4x-sin4x的最小正周期为2π | ||||||
C.函数y=cos(x+
| ||||||
D.函数y=tan(x+
|
∵x∈(-
,
)∴2x+
∈(-
,
),∴y=sin(2x+
)在区间(-
,
)内是先增后减,排除A;
∵y=cos4x-sin4x=cos2x-sin2x=cos2x,T=
=π,排除B;
令x=
代入得到cos(
+
)=cos
=0,∴点(
,0)是函数y=cos(x+
)的图象的对称中心,满足条件.
故选C.
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
∵y=cos4x-sin4x=cos2x-sin2x=cos2x,T=
| 2π |
| 2 |
令x=
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
故选C.
练习册系列答案
相关题目