题目内容
设函数f(x)=cos(
-
)-cos
.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数y=f(-2-x)在[0,2]上的值域.
| πx |
| 4 |
| π |
| 3 |
| πx |
| 4 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数y=f(-2-x)在[0,2]上的值域.
(Ⅰ)f(x)=cos(
-
)-cos
=cos
cos
+sin
sin
-cos
=
cos
+
sin
-cos
=
sin
-
cos
=sin(
x-
)
∴f(x)的最小正周期T=
=8.
(Ⅱ)由(Ⅰ)知 y=f(-2-x)=sin[
(-2-x)-
]
=sin(-
-
x-
)=-cos(
x+
)
∵0≤x≤2,∴
≤
x+
≤
∴-
≤cos(
x+
)≤
∴-
≤-cos(
x+
)≤
故函数y=f(-2-x)在[0,2]上的值域为[-
,
].
| πx |
| 4 |
| π |
| 3 |
| πx |
| 4 |
| πx |
| 4 |
| π |
| 3 |
| πx |
| 4 |
| π |
| 3 |
| πx |
| 4 |
=
| 1 |
| 2 |
| πx |
| 4 |
| ||
| 2 |
| πx |
| 4 |
| πx |
| 4 |
| ||
| 2 |
| πx |
| 4 |
| 1 |
| 2 |
| πx |
| 4 |
=sin(
| π |
| 4 |
| π |
| 6 |
∴f(x)的最小正周期T=
| 2π | ||
|
(Ⅱ)由(Ⅰ)知 y=f(-2-x)=sin[
| π |
| 4 |
| π |
| 6 |
=sin(-
| π |
| 2 |
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
∵0≤x≤2,∴
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| 2π |
| 3 |
∴-
| 1 |
| 2 |
| π |
| 4 |
| π |
| 6 |
| ||
| 2 |
∴-
| ||
| 2 |
| π |
| 4 |
| π |
| 6 |
| 1 |
| 2 |
故函数y=f(-2-x)在[0,2]上的值域为[-
| ||
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目