题目内容

选做题
已知函数f(x)=|x﹣1|+|x﹣a|.
(1)若a=1,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥2,求实数a的取值范围.
解:(1)当a=1时,不等式f(x)≥2,即2|x﹣1|≥2,
∴|x﹣1|≥1,解得 x≤0或x≥2,
故原不等式的解集为 {x|x≤0或x≥2}.
(2)令函数F(x)=f(x)+|x﹣1|=2|x﹣1|+|x﹣a|,
则F(x)= 
画出它的图象,如图所示,
由图可知,故当x=1时,函数F(x)有最小值F(1)等于a﹣1,
由题意得a﹣1≥2得a≥3,
则实数a的取值范围[3,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网