题目内容
已知公差为d的等差数列an,0<a1<| π |
| 2 |
| π |
| 2 |
(1)求数列an的通项公式;
(2)设bn=
| Sn |
| (n+1)•2n-1 |
分析:(1)利用等差数列的性质,得出sin(a1+a3)=sina2然后进行化简,要注意a1、d的范围求出a1、d,进而得出通项公式.
(2)首先求出数列bn的通项公式,然后利用Tn=Tn-
Tn求出结果.
(2)首先求出数列bn的通项公式,然后利用Tn=Tn-
| 1 |
| 2 |
解答:解:(1)∵sin(a1+a3)=sina2,∴sin2a2=2sina2cosa2=sina2,∴sina2(2cosa2-1)=0,
∵0<a1<
,0<d<
,∴0<a2<π,∴sina2≠0,∴cosa2=
,∴a2=
,
∵cos(a3-a1)=cosa2,∴cos2d=cos
,∴d=
,∴a1=
,∴an=
+(n-1)•
=
,∴数列an的通项公式为an=
.
(2)∵Sn=
=
,∴bn=
=
=
•
,
∴Tn=
(
+2•
+3•
+4•
++n•
)①,
Tn=
[
+2•
+3•
+4•
++(n-1)•
+n•
]②,
①-②得
Tn=
(
+
+
+
++
-n•
)=
-
•
=
(1-
)-
•
,
∴Tn=
-
.
∵0<a1<
| π |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
∵cos(a3-a1)=cosa2,∴cos2d=cos
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| nπ |
| 6 |
| nπ |
| 6 |
(2)∵Sn=
| n(a1+an) |
| 2 |
| n(n+1)π |
| 12 |
| Sn |
| (n+1)•2n-1 |
| πn |
| 6•2n |
| π |
| 6 |
| n |
| 2n |
∴Tn=
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 25 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
①-②得
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| ||||
1-
|
| nπ |
| 6 |
| 1 |
| 2n+1 |
| π |
| 6 |
| 1 |
| 2n |
| nπ |
| 6 |
| 1 |
| 2n+1 |
∴Tn=
| π |
| 3 |
| (n+2)π |
| 3•2n+1 |
点评:本题考查了等差数列的性质,通项公式的求法,对于等差数列与等比数列乘积形式的数列一般采取错位相减的办法求前n项和.
练习册系列答案
相关题目