题目内容

已知函数f(x)=ax3+bx2+2x在x=-1处取得极值,且在点(1,f(1)处的切线的斜率为2.
(Ⅰ)求a,b的值:
(Ⅱ)若关于x的方程f(x)+x3-2x2-x+m=0在[,2]上恰有两个不相等的实数根,求实数m的取值范围.
【答案】分析:(I)根据已知中函数f(x)=ax3+bx2+2x在x=-1处取得极值,且在点(1,f(1)处的切线的斜率为2.我们易得f'(-1)=0,f'(1)=2,由此构造关于a,b的方程,解方程即可得到答案.
(II)根据(I)的结论我们易化简关于x的方程f(x)+x3-2x2-x+m=0,构造函数g(x)=分析函数的单调性后,我们可将关于x的方程f(x)+x3-2x2-x+m=0在[,2]上恰有两个不相等的实数根,转化为不等式问题,解关于m的不等式组,即可求出实数m的取值范围.
解答:解:(I)∵函数f(x)=ax3+bx2+2x在x=-1处取得极值,
∴f'(-1)=3a-2b+2=0
又∵在点(1,f(1)处的切线的斜率为2.
f'(1)=3a+2b+2=2
解得a=-,b=
0在(1,2)内有根.(6分)
(II)由(I)得方程f(x)+x3-2x2-x+m=0可化为:

令g(x)=
则g'(x)=2x2-3x+1
∵当x∈[,2]时,g'(x)≤0
故g(x)=在[,1]上单调递减,在[1,2]上单调递增,
若关于x的方程f(x)+x3-2x2-x+m=0在[,2]上恰有两个不相等的实数根,

解得:
点评:本题考查的知识点是函数在某点取得极值的条件,利用导数研究函数的单调性,利用导数研究曲线上某点的切线方程,其中根据已知构造关于a,b的方程,解方程求出函数的解析式,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网