题目内容
(I )求证:MC∥平面BDN;
(II)求多面体ABDN的体积.
分析:(I )通过证明四边形AEMN为平行四边形,然后利用直线与平面平行的判定定理证明MC∥平面BDN;
(II)说明BC的长度就是D到AB的距离,利用VA-BDN=VN-ABD,求出多面体ABDN的体积.
(II)说明BC的长度就是D到AB的距离,利用VA-BDN=VN-ABD,求出多面体ABDN的体积.
解答:解:(I )证明:∵AB∥CD,CD=2AB,E为CD的中点,∴AB
CE,
∴四边形ABCE为平行四边形,∴BC
AE,
∵四边形AEMN是正方形,∴AE
MN,∴BC
MN,
所以四边形BCMN为平行四边形,
∴MC∥NB,
又∵NB?平面BDN,MC?平面BDN,
∴MC∥平面BDN;
(II)因为平面AEMN丄平面ABCD,
平面AEMN∩平面ABCD=AE,
又AN⊥AE,AN?平面AEMN,
∴AN⊥平面ABCD,
∵AB∥CD,∠ABC=90°,
∴BC的长度就是D到AB的距离,
∴VA-BDN=VN-ABD=
×S△ABD×AN=
×
×AB×BC×AN=
×
×1×2×2=
.
∴多面体VA-BDN的体积为
.
| ∥ |
. |
∴四边形ABCE为平行四边形,∴BC
| ∥ |
. |
∵四边形AEMN是正方形,∴AE
| ∥ |
. |
| ∥ |
. |
所以四边形BCMN为平行四边形,
∴MC∥NB,
又∵NB?平面BDN,MC?平面BDN,
∴MC∥平面BDN;
(II)因为平面AEMN丄平面ABCD,
平面AEMN∩平面ABCD=AE,
又AN⊥AE,AN?平面AEMN,
∴AN⊥平面ABCD,
∵AB∥CD,∠ABC=90°,
∴BC的长度就是D到AB的距离,
∴VA-BDN=VN-ABD=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
∴多面体VA-BDN的体积为
| 2 |
| 3 |
点评:本题考查直线与平面平行的判定定理的应用,几何体的体积的求法,考查计算能力空间想象能力.
练习册系列答案
相关题目