题目内容
在等差数列{an}中,Sn为其前n项和(n∈N*),且a3=5,S3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 | anan+1 |
分析:(Ⅰ)依题意,解方程组
可求得a1与d,从而可求等差数列{an}的通项公式;
(Ⅱ)利用裂项法可求得bn=
(
-
),从而可求数列{bn}的前n项和Tn.
|
(Ⅱ)利用裂项法可求得bn=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(Ⅰ)由已知条件得
…(2分)
解得a1=1,d=2,…(4分)
∴an=2n-1.…(6分)
(Ⅱ)由(Ⅰ)知,an=2n-1,
∴bn=
=
=
(
-
),…(9分)
∴Tn=b1+b2+…+bn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.…(12分)
|
解得a1=1,d=2,…(4分)
∴an=2n-1.…(6分)
(Ⅱ)由(Ⅰ)知,an=2n-1,
∴bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查等差数列的通项公式,着重考查裂项法求和,求得bn=
(
-
)是关键,属于中档题.
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
练习册系列答案
相关题目