题目内容

如图,四边形ABCD是一个边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,其余部分都是平地,P是弧TS上一点,现有一位开发商想在平地上建造一个两边落在BC与CD上的长方形停车场PQCR,求长方形停车场PQCR面积的最大值.
分析:求停车场面积,需建立长方形的面积函数.这里自变量的选取十分关键,通常有代数和三角两种设未知数的方法如果设长方形PQCR的一边长为x(不妨设PR=x),则另一边长PQ=100-
902-(100-x)2
,这样SPQCR=PQ•PR=x•(100-
902-(100-x)2
),但该函数的最值不易求得,如果将∠BAP作为自变量,用它可表示PQ、PR,再建立面积函数,则问题就容易得多.
解答:解:延长RP交AB于M,设∠PAB=α(0°<α<90°),则
AM=90cosα,MP=90sinα,PQ=100-90cosα,PR=100-90sinα.
∴SPQCR=PQ•PR=(100-90cosα)(100-90sinα)
=10000-9000(cosα+sinα)+8100cosαsinα.
设t=cosα+sinα,
∵0°≤α≤90°
t∈(1,
2
],cosαsinα=
t2-1
2

SPQCR=10000-9000t+8100×
t2-1
2
=4050(t-
10
9
)2+950

∴当t=
2
,SPQCR有最大值14050-9000
2

答:长方形停车场PQCR面积的最大值为14050-9000
2
平方米.
点评:本题考查的重点是函数模型的构建,解题的关键是自变量的选取,利用配方法求函数的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网