题目内容
已知数列{an}的前n项和Sn=[2+(-1)n]•n(n∈N*)
(1)求数列{an}的通项公式,
(2)若bn=(an-t)(-1)n(t为常数),且数列{bn}是等差数列,求常数t的值.
(1)求数列{an}的通项公式,
(2)若bn=(an-t)(-1)n(t为常数),且数列{bn}是等差数列,求常数t的值.
(1)当n≥2时an=sn-sn-1=[2+(-1)n]•n-[2+(-1)n-1](n-1)=(n+1)(-1)n+2
但当n=1时a1=s1=1不适合上式
故an=
2
(2)∵数列{bn}是等差数列
∴2b2=b1+b3
∵bn=(an-t)(-1)n
∴2(a2-t)=-(a1-t)-(a3-t)
∴t=
但当n=1时a1=s1=1不适合上式
故an=
|
(2)∵数列{bn}是等差数列
∴2b2=b1+b3
∵bn=(an-t)(-1)n
∴2(a2-t)=-(a1-t)-(a3-t)
∴t=
| 9 |
| 4 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |