题目内容
【题目】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.
【答案】(1)3人,2人,2人;(2)分布列见解析,
.
【解析】
(1)由甲、乙、丙三个部门的员工人数之比为
,利用分层抽样的方法,即可求得从甲、乙、丙三个部门的员工人数;
(2)由题意,随机变量
的所有可能取值为
,求得相应的概率,得出其分布列,利用期望的公式,即可求解.
(1) 由题意知,某单位甲、乙、丙三个部门的员工人数分别为24,16,16,
可得甲、乙、丙三个部门的员工人数之比为
,
由于采用分层抽样的方法从中抽取7人,
所以应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
(2)随机变量
的所有可能取值为
,
则
,
![]()
所以,随机变量
的分布列为
| 0 | 1 | 2 | 3 |
|
|
|
|
|
所以随机变量
的数学期望
.
【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在
内,则为合格品,否则为不合格品.如图是甲流水线样本的频数分布表和乙流水线样本的频率分布直方图.
![]()
(1)根据频率分布直方图,估计乙流水线生产的产品该质量指标值的中位数;
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件?
(3)根据已知条件完成下面
列联表,并回答是否有
的把握认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选择有关”?
甲流水线 | 乙流水线 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:
,其中
.
临界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |