题目内容

已知f(x)=x2+C,且f[f(x)]=f(x2+1)
(1)设g(x)=f[(x)],求g(x)的解析式.
(2)设?(x)=g(x)-λf(x),试问是否存在实数λ,使?(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数.
(1)由题意可知:
f(x)=x2+C,且f[f(x)]=f(x2+1)
∴(x2+c)2+c=(x2+1)2+c
∴x4+2cx2+c2=x4+2x2+1
2c=2
c2=1
,解得:c=1.
∴f(x)=x2+1,∵g(x)=f[(x)],
∴函数g(x)的解析式为:g(x)=x4+2x2+2.
(2)由(1)可知:f(x)=x2+1、g(x)=x4+2x2+2,
∵?(x)=g(x)-λf(x),
∴θ(x)=x4+(2-λ)x2+2-λ,∴θ′(x)=4x3+2(2-λ)x
假设存在使的?(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数.
则θ′(-1)=0
∴-4-2(2-λ)=0,∴λ=4.
此时:θ(x)=x4-2x2-2,∴θ′(x)=4x3-4x.
由θ′(x)>0解得,x∈(-1,0)∪(1,+∞);
由θ′(x)<0解得,x∈(-∞,-1)∪(0,1).
故满足题意.
所以存在λ=4使的?(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网