题目内容
已知函数f(x)=
(x>0),数列{an}满足a1=1,当n≥2时,an=f(an-1)
(1)求an;
(2)若bn=
,若Sn=b1+b2+…+bn,求
.
| 2x2+1 |
(1)求an;
(2)若bn=
| 2n |
| an+an+1 |
| lim |
| n→∞ |
| bn•Sn |
| (an)2 |
分析:(1)根据an=f(an-1),可得an2+1=2(an-12+1),从而可知{an2+1}是以2为首项,2为公比的等比数列,故可求an;
(2)由(1)可得bn=
-
,从而Sn=b1+b2+…+bn=
-1,故可求极限.
(2)由(1)可得bn=
| 2n+1-1 |
| 2n-1 |
| 2n+1-1 |
解答:解:(1)∵an=f(an-1)
∴an2+1=2(an-12+1)
∴{an2+1}是以2为首项,2为公比的等比数列
∴an2+1=2n
∴an=
(2)∵bn=
∴bn=
-
∴Sn=b1+b2+…+bn=
-1
∴
=2-
∴an2+1=2(an-12+1)
∴{an2+1}是以2为首项,2为公比的等比数列
∴an2+1=2n
∴an=
| 2n-1 |
(2)∵bn=
| 2n |
| an+an+1 |
∴bn=
| 2n+1-1 |
| 2n-1 |
∴Sn=b1+b2+…+bn=
| 2n+1-1 |
∴
| lim |
| n→∞ |
(
| ||||||
(
|
| 2 |
点评:本题以函数为载体,考查构造法求数列的通项,考查叠加法求和,考查了数列的极限,综合性强.
练习册系列答案
相关题目