题目内容

设f(x)=
ax2+bx+1
x+c
(a>0)为奇函数,且|f(x)|min=2
2
,数列{an}与{bn}满足如下关系:a1=2,an+1=
f(an)-an
2
bn=
an-1
an+1

(1)求f(x)的解析表达式;
(2)证明:当n∈N+时,有bn(
1
3
)n
由f(x)是奇函数,得b=c=0,
由|f(x)min|=2
2
,得a=2,故f(x)=
2x2+1
x

(2)an+1=
f(an)-an
2
=
2
a2n
+1
a n
-an
2
=
a2n
+1
2an

bn+1=
an+1-1
an+1+1
=
a2n
+1
2an
-1
a2n
+1
2an
+1
=
a2n
-2an+1
a2n
+2an+1
=(
an-1
an+1
)2
=bn2
∴bn=bn-12=bn-24
b2n-11
,而b1=
1
3

∴bn=(
1
3
)2n-1

当n=1时,b1=
1
3
,命题成立,
当n≥2时∵2n-1=(1+1)n-1=1+Cn-11+Cn-12++Cn-1n-1≥1+Cn-11=n
(
1
3
)2n-1
(
1
3
)n
,即bn(
1
3
)n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网