题目内容
一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个.
求:
(Ⅰ)连续取两次都是红球的概率;
(Ⅱ)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取球次数ξ的概率分布列及期望.
解:(Ⅰ)连续取两次都是红球的概率:
;…(4分)
(Ⅱ)ξ的可能取值为1,2,3,4,
,
,
,
.
∴ξ的概率分布列为
Eξ=1×
+2×
+3×
+4×
=
.…(12分)
分析:(Ⅰ)第一次和第二次取到红球的概率都是
,由此能求出连续取两次都是红球的概率.
(Ⅱ)ξ的可能取值为1,2,3,4,分别求出P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4).由此能求出ξ的概率分布列和Eξ.
点评:本题考查离散型随机变量的概率分布列和数学期望的求法,是中档题,是历年高考的必考题型.解题时要认真审题,注意排列组合和概率知识的灵活运用.
(Ⅱ)ξ的可能取值为1,2,3,4,
∴ξ的概率分布列为
| ξ | 1 | 2 | 3 | 4 |
| P |
分析:(Ⅰ)第一次和第二次取到红球的概率都是
(Ⅱ)ξ的可能取值为1,2,3,4,分别求出P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4).由此能求出ξ的概率分布列和Eξ.
点评:本题考查离散型随机变量的概率分布列和数学期望的求法,是中档题,是历年高考的必考题型.解题时要认真审题,注意排列组合和概率知识的灵活运用.
练习册系列答案
相关题目