ÌâÄ¿ÄÚÈÝ
ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Ê×Ïîa1=a£¬ÇÒan+1=2Sn+1£¬n¡ÊN*
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýaµÄÖµ£»
£¨2£©Éèbn=nan£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©Éè¸÷ÏΪ0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬Áîcn=
(n¡ÊN*)£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£®
£¨1£©ÈôÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ÇóʵÊýaµÄÖµ£»
£¨2£©Éèbn=nan£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©Éè¸÷ÏΪ0µÄÊýÁÐ{cn}ÖУ¬ËùÓÐÂú×ãci•ci+1£¼0µÄÕûÊýiµÄ¸öÊý³ÆÎªÕâ¸öÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±£¬Áîcn=
| bn-4 | bn |
·ÖÎö£º£¨1£©¸ù¾Ýan+1=2Sn+1£¨n¡ÊN*£©£¬Àà±È¿ÉµÃan=2Sn-1+1£¨n¡Ý2£¬n¡ÊN*£©£¬Á½Ê½Ïà¼õ¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©È·¶¨ÊýÁеÄͨÏÀûÓôíλÏà¼õ·¨£¬¿ÉÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©È·¶¨C1C2=-1£¼0£¬n¡Ý2ʱ£¬Cn£¾0£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©È·¶¨ÊýÁеÄͨÏÀûÓôíλÏà¼õ·¨£¬¿ÉÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨3£©È·¶¨C1C2=-1£¼0£¬n¡Ý2ʱ£¬Cn£¾0£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃan+1=2Sn+1£¬an=2Sn-1+1£¨n¡Ý2£¬n¡ÊN*£©£¬
Á½Ê½Ïà¼õµÃan+1-an=2£¨Sn-Sn-1£©=2an£¬¼´an+1=3an£¨n¡Ý2£¬n¡ÊN*£©£®
ÓÖa2=2S1+1=2a1+1=3=3a1£¬ËùÒÔa1=1
ËùÒÔÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«±ÈΪ3µÄµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©µÃ£¬an=3n-1
¡àbn=nan=n•3n-1
¡àTn=1+2•3+3•32+¡+n•3n-1£¬
¡à3Tn=1•3+2•32+¡+£¨n-1£©•3n-1+n•3n£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º-2Tn=1+3+32+¡+3n-1-n•3n£¬
¡àTn=
•3n+
£»
£¨3£©ÓÉ£¨2£©Öª£¬bn=n•3n-1£¬
¡ßcn=
(n¡ÊN*)
¡àC1=-3£¬C2=
£¬¡àC1C2=-1£¼0
¡ßCn+1-Cn=
-
=
£¾0
¡ßC2=
£¾0£¬¡àn¡Ý2ʱ£¬Cn£¾0
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1£®
Á½Ê½Ïà¼õµÃan+1-an=2£¨Sn-Sn-1£©=2an£¬¼´an+1=3an£¨n¡Ý2£¬n¡ÊN*£©£®
ÓÖa2=2S1+1=2a1+1=3=3a1£¬ËùÒÔa1=1
ËùÒÔÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«±ÈΪ3µÄµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©µÃ£¬an=3n-1
¡àbn=nan=n•3n-1
¡àTn=1+2•3+3•32+¡+n•3n-1£¬
¡à3Tn=1•3+2•32+¡+£¨n-1£©•3n-1+n•3n£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º-2Tn=1+3+32+¡+3n-1-n•3n£¬
¡àTn=
| 2n-1 |
| 4 |
| 1 |
| 4 |
£¨3£©ÓÉ£¨2£©Öª£¬bn=n•3n-1£¬
¡ßcn=
| bn-4 |
| bn |
¡àC1=-3£¬C2=
| 1 |
| 3 |
¡ßCn+1-Cn=
| 4 |
| bn |
| 4 |
| bn+1 |
| 4(2n+3) |
| n(n+)•3n |
¡ßC2=
| 1 |
| 3 |
¡àÊýÁÐ{cn}µÄ¡°»ýÒìºÅÊý¡±Îª1£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁУ¬¿¼²éÊýÁеÄÇóºÍ£¬¿¼²éж¨Ò壬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿