题目内容
10.若等差数列{an}满足a12+a32=2,则a3+a4+a5的最大值为( )| A. | $\frac{{3\sqrt{2}}}{2}$ | B. | 3 | C. | $\frac{9}{2}$ | D. | $3\sqrt{5}$ |
分析 把已知等式用a4和公差d表示,化为关于d的一元二次方程后由判别式大于等于求得a4的最大值,结合等差数列的性质得答案.
解答 解:由a12+a32=2,得
$({a}_{4}-3d)^{2}+({a}_{4}-d)^{2}=2$,
化为:$5{d}^{2}-4{a}_{4}d+{{a}_{4}}^{2}-1=0$,
由判别式△≥0,得:16${{a}_{4}}^{2}$-20(${{a}_{4}}^{2}$-1)≥0,
即${{a}_{4}}^{2}≤5$,
-$\sqrt{5}$≤${a}_{4}≤\sqrt{5}$,
∴a3+a4+a5的最大值为$3{a}_{4}=3\sqrt{5}$.
故选:D.
点评 本题考查了等差数列的性质,训练了利用二次方程的判别式求最值,是中档题.
练习册系列答案
相关题目
20.由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在160名乘客中进行随机抽样,共抽取20人进行调查反馈,将他们的候车时间作为样本分成4组,如表所示(单位:分钟):
(Ⅰ)估计这160名乘客中候车时间少于10分钟的人数;
(Ⅱ)若从上表第1组、第2组的6人中选2人进行问卷调查,求抽到的2人恰好来自不同组的概率.
| 组别 | 候车时间 | 人数 |
| 1 | [0,5) | 2 |
| 2 | [5,10) | 4 |
| 3 | [10,15) | 8 |
| 4 | [15,20) | 6 |
(Ⅱ)若从上表第1组、第2组的6人中选2人进行问卷调查,求抽到的2人恰好来自不同组的概率.
1.一个几何体的三视图如图所示,则该几何体的表面积为( )

| A. | 2+$\sqrt{2}$+$\sqrt{6}$ | B. | 3+$\sqrt{2}$+$\sqrt{6}$ | C. | 2+$\sqrt{2}$+$\sqrt{3}$ | D. | 3+$\sqrt{2}$+$\sqrt{3}$ |
18.将函数f(x)=2sin(2x+$\frac{π}{4}$)的图象向右平移φ(φ>0)个单位,再将图象上每一点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),所得图象关于直线x=$\frac{π}{4}$对称,则φ的最小值为( )
| A. | $\frac{1}{8}π$ | B. | $\frac{1}{2}π$ | C. | $\frac{3}{4}π$ | D. | $\frac{3}{8}π$ |
2.执行如图所示程序框图,则输出a=( )

| A. | 20 | B. | 14 | C. | 10 | D. | 7 |