题目内容
已知数列{an}为递减的等差数列,Sn是数列{an}的前n项和,且a1a4=27,S4=24.
(1)求数列{|an|}的前n(n≥6)项和S′n;
(2)令bn=
,求数列{bn}的前n项和Tn.
(1)求数列{|an|}的前n(n≥6)项和S′n;
(2)令bn=
| 1 | anan+1 |
分析:(1)由数列{an}为递减的等差数列,且S4=24,S4=
=24,知a1+a4=12,由a1a4=27,d<0,知a1=9,a4=3,d=-2,由此能求出数列{|an|}的前n(n≥6)项和S′n.
(2)由bn=
=
(
-
),利用裂项求和法能求出数列{bn}的前n项和Tn.
| 4(a1+a4) |
| 2 |
(2)由bn=
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 2n-11 |
| 1 |
| 2n-9 |
解答:解:(1)∵数列{an}为递减的等差数列,且S4=24,
∴S4=
=24,
∴a1+a4=12,
又∵a1a4=27,d<0,
∴a1=9,a4=3,d=-2,
∴an=-2n+11,
∴a5>0,a6<0,
∴当n>6时,Sn′=2S5-Sn=n2-10n+50.
(2)∵an=-2n+11,
bn=
=
=
=
(
-
),
∴数列{bn}的前n项和
Tn=
[(
-
)+(
-
)+…+(
-
)]
=-
(
+
)
=
.
∴S4=
| 4(a1+a4) |
| 2 |
∴a1+a4=12,
又∵a1a4=27,d<0,
∴a1=9,a4=3,d=-2,
∴an=-2n+11,
∴a5>0,a6<0,
∴当n>6时,Sn′=2S5-Sn=n2-10n+50.
(2)∵an=-2n+11,
bn=
| 1 |
| anan+1 |
| 1 |
| (-2n+11)(-2n+9) |
=
| 1 |
| (2n-11)(2n-9) |
=
| 1 |
| 2 |
| 1 |
| 2n-11 |
| 1 |
| 2n-9 |
∴数列{bn}的前n项和
Tn=
| 1 |
| 2 |
| 1 |
| -9 |
| 1 |
| -7 |
| 1 |
| -7 |
| 1 |
| -5 |
| 1 |
| 2n-11 |
| 1 |
| 2n-9 |
=-
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 2n-9 |
=
| n |
| 81-18n |
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意等差数列的性质和裂项求和法的合理运用.
练习册系列答案
相关题目