搜索
题目内容
二次函数f(x)=x
2
-2x+3的单调递增区间是______.
试题答案
相关练习册答案
因为函数f(x)=x
2
-2x+3的对称轴为x=1,开口向上,
所以函数f(x)=x
2
-2x+3的单调递增区间为[1,+∞)
故答案为:[1,+∞).
练习册系列答案
课堂夺冠100分系列答案
随堂手册作业本系列答案
桂壮红皮书同步训练达标卷系列答案
主题课时强化训练系列答案
随堂练习卷系列答案
随堂小练系列答案
浙江期末复习系列答案
周考月考期中期末冲刺100分系列答案
名校通行证有效作业系列答案
全能优化大考卷金题卷系列答案
相关题目
已知二次函数f(x)=ax
2
+bx+c(a,b,c为实数a不为零),且同时满足下列条件:
(1)f(-1)=0;
(2)对于任意的实数x,都有f(x)-x≥0;
(3)当x∈(0,2)时有
f(x)≤(
x+1
2
)
2
.
①求f(1);
②求a,b,c的值;
③当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调函数,求m的取值范围.
已知二次函数f(x)=ax
2
+bx+c(a∈N
*
),若不等式f(x)<2x的解集为(1,4),且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求实数m的取值范围.
设二次函数f(x)=ax
2
+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log
2
[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
已知二次函数f(x)=ax
2
+bx(a、b为常数且a≠0)满足条件:f(-x+5)=f(x-3),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)函数f(x)在(x∈[t,t+1],t∈R)的最大值为u(t),求u(t)解析式.
设二次函数f(x)=ax
2
+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log
2
[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案