题目内容
已知数列{an}满足:a1=2t-3(t∈R且t≠±1),an+1=
(n∈N*).
(1)当t=2时,求证:{
}是等差数列;
(2)若t>0,试比较an+1与an的大小;
(3)在(2)的条件下,已知函数f(x)=
(x>0),是否存在正整数t,使得对一切n∈N*不等式f(an+1)<f(an)恒成立?若存在,求出t的最小值;若不存在,请说明理由.
| (2tn+1-3)an+2(t-1)tn-1 |
| an+2tn-1 |
(1)当t=2时,求证:{
| 2n-1 |
| an+1 |
(2)若t>0,试比较an+1与an的大小;
(3)在(2)的条件下,已知函数f(x)=
| x |
| x2+4 |
分析:(1)利用数列递推式,化简,可得
-
=
,从而{
}是以
为公差的等差数列;
(2)先确定数列的通项,再利用作差比较法,即可得到结论;
(3)对一切n∈N*不等式f(an+1)<f(an)恒成立,可转化为an+1an-4>0,{an}为递增数列,只需a1a2-4>0,由此可得结论.
| 2n+1-1 |
| an+1+1 |
| 2n-1 |
| an+1 |
| 1 |
| 2 |
| 2n-1 |
| an+1 |
| 1 |
| 2 |
(2)先确定数列的通项,再利用作差比较法,即可得到结论;
(3)对一切n∈N*不等式f(an+1)<f(an)恒成立,可转化为an+1an-4>0,{an}为递增数列,只需a1a2-4>0,由此可得结论.
解答:(1)证明:当t=2时,an+1=
∴an+1+1=
∴
=
∴
-
=
∴{
}是以
为公差的等差数列;
(2)解:∵an+1=
=
∴
=
=
令
=bn,则bn+1=
,b1=
=2
∴
=
+
,
=
∴
=
∴
=
∴an=
∴an+1-an=
-
=
[n(1+t+…+tn)-(n+1)(1+t+…+tn-1)]
=
[(tn-1)+…+(tn-tn-1)]=
[(1+t+…+tn-1)+t(1+t+…+tn-2)+…+tn-1]
显然t>0(t≠1)时,an+1-an>0,∴an+1>an;
(3)解:∵f(an+1)-f(an)=
-
=
<0,an+1>an
∴an+1an-4>0,{an}为递增数列
∴只需a1a2-4>0
∴(2t-3)(t2-2)-4>0
令f(t)=(2t-3)(t2-2)-4,则f′(t)=6t2-6t-8
∴t>2时,f′(t)>0,函数为增函数
∵f(2)=-2<0,f(3)=17>0
∴满足题意的最小正整数t存在,最小值为3.
| (2n+2-3)an+2n+1-1 |
| an+2n+1-1 |
∴an+1+1=
| (2n+2-2)an+2n+2-2 |
| an+2n+1-1 |
∴
| 2n+1-1 |
| an+1+1 |
| an+2n+1-1 |
| 2(an+1) |
∴
| 2n+1-1 |
| an+1+1 |
| 2n-1 |
| an+1 |
| 1 |
| 2 |
∴{
| 2n-1 |
| an+1 |
| 1 |
| 2 |
(2)解:∵an+1=
| (2tn+1-3)an+2(t-1)tn-1 |
| an+2tn-1 |
| 2(tn+1-1)(an+1) |
| an+2tn-1 |
∴
| an+1+1 |
| tn+1-1 |
| 2(an+1) |
| an+2tn-1 |
2•
| ||
|
令
| an+1 |
| tn-1 |
| 2bn |
| bn+2 |
| a1+1 |
| t-1 |
∴
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| b1 |
| 1 |
| 2 |
∴
| 1 |
| bn |
| n |
| 2 |
∴
| an+1 |
| tn-1 |
| 2 |
| n |
∴an=
| 2(tn-1) |
| n |
∴an+1-an=
| 2(tn+1-1) |
| n+1 |
| 2(tn-1) |
| n |
| 2(t-1) |
| n(n+1) |
=
| 2(t-1) |
| n(n+1) |
| 2(t-1)2 |
| n(n+1) |
显然t>0(t≠1)时,an+1-an>0,∴an+1>an;
(3)解:∵f(an+1)-f(an)=
| an+1 |
| an+12+4 |
| an |
| an2+4 |
| (an+1-an)(an+1an-4) |
| (an+12+4)(an2+4 |
∴an+1an-4>0,{an}为递增数列
∴只需a1a2-4>0
∴(2t-3)(t2-2)-4>0
令f(t)=(2t-3)(t2-2)-4,则f′(t)=6t2-6t-8
∴t>2时,f′(t)>0,函数为增函数
∵f(2)=-2<0,f(3)=17>0
∴满足题意的最小正整数t存在,最小值为3.
点评:本题考查数列递推式,考查数列的通项,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关题目