题目内容

已知过点A(0,1)的直线l,斜率为k,与圆C:(x-2)2+(y-3)2=1相交于M、N两个不同点.
(1)求实数k取值范围;
(2)若O为坐标原点,且
OM
ON
=12
,求k的值.
(1)由题意,设直线l方程为y=kx+1,
与圆C的方程消去y,得(1+k2)x2-4(1+k)x+7=0…(*)
∵直线l与圆C相交于M、N两个不同点.
∴△=16(1+k)2-28(1+k2)>0,解此不等式得
4-
7
3
<k<
4+
7
3
…(6分)
(2)设M(x1,y1),N(x2,y2),
根据(1)的(*),得x1+x2=
4+4k
1+k2
,x1x2=
7
1+k2

OM
ON
=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1
OM
ON
=12
即(1+k2)x1x2+k(x1+x2)+1=
4k(k+1)
1+k2
+8=12

解之得k=1,符合
4-
7
3
<k<
4+
7
3
,得k的值为1.               …(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网