题目内容
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)证明:f(x)是R上的增函数;
(4)若f(x)?f(2x-x2)>1,求x的取值范围。
解析: (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1
(2)令a=x,b=-x则 f(0)=f(x)f(-x) ∴![]()
由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0
∴
又x=0时,f(0)=1>0
∴对任意x∈R,f(x)>0
(3)任取x2>x1,则f(x2)>0,f(x1)>0,x2-x1>0
∴![]()
∴f(x2)>f(x1) ∴f(x)在R上是增函数
(4)f(x)?f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x)又1=f(0),
f(x)在R上递增
∴由f(3x-x2)>f(0)得:3x-x2>0 ∴ 0<x<3
练习册系列答案
相关题目