题目内容
已知f(x)=ax-
-2lnx,且f(e)=be-
-2(e为自然对数的底数).
(1)求a与b的关系;
(2)若f(x)在其定义域内为增函数,求a的取值范围;
(3)证明:
+
+…+
<
(n∈N,n≥2)
(提示:需要时可利用恒等式:lnx≤x-1)
| b |
| x |
| a |
| e |
(1)求a与b的关系;
(2)若f(x)在其定义域内为增函数,求a的取值范围;
(3)证明:
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 2n2-n-1 |
| 4(n+1) |
(提示:需要时可利用恒等式:lnx≤x-1)
(1)由题意f(x)=ax-
-2lnx,f(e)=be-
-2,∴ae-
-2=be-
-2,
∴(a-b)(e+
)=0,∴a=b.
(2)由(1)知:f(x)=ax-
-2lnx,(x>0),∴f′(x)=a+
-
=
,
令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立.
即ax2-2x+a≥0,a≥
在(0,+∞)上恒成立.
又∵0<
=
≤1,x>0,所以a≥1.
(3)证明:先证:lnx-x+1≤0 (x>0),设K(x)=lnx-x+1,则K′(x)=
-1=
.
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0. 即lnx-x+1≤0,∴lnx≤x-1.
由上知 lnx≤x-1,又x>0,∴
≤1-
.
∵n∈N+,n≥2,令x=n2,得
≤1-
,∴
≤
(1-
),
∴
+
+…+
≤
(1-
+1-
+…+1-
)
=
[n-1-(
+
+… +
)]<
[n-1-(
+
+… +
)]
=
[n-1-(
-
+
-
+…
-
)]=
[n-1-(
-
)]=
,
故要证的不等式成立.
| b |
| x |
| a |
| e |
| b |
| e |
| a |
| e |
∴(a-b)(e+
| 1 |
| e |
(2)由(1)知:f(x)=ax-
| b |
| x |
| a |
| x2 |
| 2 |
| x |
| ax2-2x+a |
| x2 |
令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立.
即ax2-2x+a≥0,a≥
| 2x |
| x2+1 |
又∵0<
| 2x |
| x2+1 |
| 2 | ||
x+
|
(3)证明:先证:lnx-x+1≤0 (x>0),设K(x)=lnx-x+1,则K′(x)=
| 1 |
| x |
| 1-x |
| x |
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0. 即lnx-x+1≤0,∴lnx≤x-1.
由上知 lnx≤x-1,又x>0,∴
| lnx |
| x |
| 1 |
| x |
∵n∈N+,n≥2,令x=n2,得
| lnn2 |
| n2 |
| 1 |
| n2 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| n2 |
∴
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 2n2-n-1 |
| 4(n+1) |
故要证的不等式成立.
练习册系列答案
相关题目