题目内容
已知函数f(x)=
sin2x-2sin(
+x)cos(π-x).
(1)求函数f(x)的单调增区间.
(2)若f(
-
)=
,α为第二象限角,求cos(2α+
)的值.
| 3 |
| π |
| 2 |
(1)求函数f(x)的单调增区间.
(2)若f(
| α |
| 2 |
| π |
| 12 |
| 3 |
| 2 |
| π |
| 3 |
分析:(1)化简函数式可得f(x)=2sin(2x+
)+1,由2kπ-
≤2x+
≤2kπ+
,解x的范围可得单调区间;
(2)由(1)可得f(
-
)=2sinα+1=
,可得sinα和cosα的值,由二倍角公式可得sin2α和cos2α,而cos(2α+
)=
cos2α-
sin2α,代入化简可得.
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(2)由(1)可得f(
| α |
| 2 |
| π |
| 12 |
| 3 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
解答:解:(1)化简函数式可得f(x)=
sin2x-2cosx(-cosx)
=
sin2x+2cos2x=
sin2x+cos2x+1=2sin(2x+
)+1,
由2kπ-
≤2x+
≤2kπ+
,得kπ-
≤x≤kπ+
,
故函数的单调递增区间为[kπ-
,kπ+
](k∈Z)
(2)由(1)可得f(
-
)=2sinα+1=
,∴sinα=
,
∵α为第二象限角,∴cosα=-
=-
,
∴sin2α=2sinαcosα=-
,cos2α=cos2α-sin2α=
,
∴cos(2α+
)=
cos2α-
sin2α=
×
-(-
)×
=
| 3 |
=
| 3 |
| 3 |
| π |
| 6 |
由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
故函数的单调递增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(2)由(1)可得f(
| α |
| 2 |
| π |
| 12 |
| 3 |
| 2 |
| 1 |
| 4 |
∵α为第二象限角,∴cosα=-
| 1-sin2α |
| ||
| 4 |
∴sin2α=2sinαcosα=-
| ||
| 8 |
| 7 |
| 8 |
∴cos(2α+
| π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 7 |
| 8 |
| 1 |
| 2 |
| ||
| 8 |
| ||
| 2 |
7+3
| ||
| 16 |
点评:本题考查两角和与差的三角函数公式,涉及诱导公式和二倍角公式,属中档题.
练习册系列答案
相关题目