题目内容
若数列{an}满足an=qn(q>0,n∈N*),以下命题正确的是( )
(1){a2n}是等比数列;
(2){
}是等比数列;
(3){lgan}是等差数列;
(4){lgan2}是等差数列.
(1){a2n}是等比数列;
(2){
| 1 |
| an |
(3){lgan}是等差数列;
(4){lgan2}是等差数列.
| A、(1)(3) |
| B、(3)(4) |
| C、(1)(2)(3)(4) |
| D、(2)(3)(4) |
分析:首先根据,
=q和lg
=lgan+1-lgan=lgq.判断数列{an}为等比数列,{lgan}是等差数列,根据等比数列的性质进而判断{a2n},{
},{an2}均是等比数列.根据{an2}均是等比数列,可判断{lgan2}是等差数列.
| an+1 |
| an |
| an+1 |
| an |
| 1 |
| an |
解答:解:∵an=qn,∴
=q,lg
=lgan+1-lgan=lgq.
∴数列{an}为等比数列,{lgan}是等差数列
∴{a2n},{
}均是等比数列.
∴{lgan2}也是等差数列.
故(1)(2)(3)(4)均正确.
故选C
| an+1 |
| an |
| an+1 |
| an |
∴数列{an}为等比数列,{lgan}是等差数列
∴{a2n},{
| 1 |
| an |
∴{lgan2}也是等差数列.
故(1)(2)(3)(4)均正确.
故选C
点评:本题主要考查了等比数列的性质.若{an}是等比数列,{bn}也是等比数则{a2n},{a3n}…是等比数列,{can},c是常数,{anbn},{
}是等比数列
| an |
| bn |
练习册系列答案
相关题目