ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf(x)=
£¬a
R£®
(1)Èç¹ûº¯Êý
µÄ¶¨ÒåÓòΪ [a+1£¬a+2]ʱ£¬Çóº¯Êý
µÄÖµÓò£»
(2)¶ÔÈÎÒâ
£¬º¯Êý
µÄͼÏóÊÇÖÐÐĶԳÆÍ¼ÐΣ¬ÊÔÖ¤Ã÷ËùÓжԳÆÖÐÐľùÔÚͬһÌõÖ±ÏßÉÏ£»
(3)ÎÒÃÇÀûÓú¯Êýy=f(x)¹¹ÔìÒ»¸öÊýÁÐ{x
}£¬·½·¨ÈçÏ£º¶ÔÓÚ¸ø¶¨µÄ¶¨ÒåÓòÖеÄx
£¬Áîx
=f(x
)£¬x
=f(x
)£¬¡£¬x
=f(x
£1)£¬¡
ÔÚÉÏÊö¹¹ÔìÊýÁеĹý³ÌÖУ¬Èç¹ûx
(i=2£¬3£¬4£¬¡)ÔÚ¶¨ÒåÓòÖУ¬¹¹ÔìÊýÁеĹý³Ì½«¼ÌÐøÏÂÈ¥£»Èç¹ûx
²»ÔÚ¶¨ÒåÓòÖУ¬Ôò¹¹ÔìÊýÁеĹý³ÌÍ£Ö¹£®
¢ÙÈç¹û¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸ö³£ÊýÁÐ{x
}£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
¢ÚÈç¹ûÈ¡¶¨ÒåÓòÖÐÈÎÒ»Öµ×÷Ϊx
£¬¶¼¿ÉÒÔÓÃÉÏÊö·½·¨¹¹Ôì³öÒ»¸öÎÞÇîÊýÁÐ{x
}£¬ÇóʵÊýaµÄÖµ£®
½âÎö£º
|
½â£º
(2)Ö¤Ã÷£º¸ù¾Ýº¯ÊýµÄͼÏó¿ÉÖªº¯ÊýͼÏñµÄ¶Ô³ÆÖÐÐÄΪ Éèµã
¶ÔÈÎÒâʵÊý £¨3£©¢Ù¸ù¾ÝÌâÒ⣬ֻÐè ½« ÓÉ¡÷ ¢Ú¸ù¾ÝÌâÒ⣬ ÓÉÓÚ
|
|
A¡¢(
| ||||
B¡¢£¨
| ||||
C¡¢£¨
| ||||
D¡¢[
|