题目内容
| π |
| 2 |
| 2 |
| 3 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|
分析:求出函数的周期,确定ω的值,利用f(
)=-
,得Asinφ=-
,利用f(
)=0,求出(Acosφ+Asinφ)=0,然后求f(0).
| π |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
| 7π |
| 12 |
解答:解:由题意可知,此函数的周期T=2(
π-
π)=
,
故
=
,∴ω=3,f(x)=Acos(3x+φ).
f(
)=Acos(
+φ)=Asinφ=-
.
又由题图可知f(
)=Acos(3×
+φ)=Acos(φ-
π)
=
(Acosφ+Asinφ)=0,
∴f(0)=Acosφ=
.
故选C.
| 11 |
| 12 |
| 7 |
| 12 |
| 2π |
| 3 |
故
| 2π |
| ω |
| 2π |
| 3 |
f(
| π |
| 2 |
| 3π |
| 2 |
| 2 |
| 3 |
又由题图可知f(
| 7π |
| 12 |
| 7π |
| 12 |
| 1 |
| 4 |
=
| ||
| 2 |
∴f(0)=Acosφ=
| 2 |
| 3 |
故选C.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的周期性及其求法,考查视图能力,计算能力,是基础题.
练习册系列答案
相关题目