题目内容
已知α,β为锐角△ABC的两个内角,α≠β,可导函数f(x)满足xf'<f(x),则( )
| A.cosβf(sinα)=sinαf(cosβ) | B.cosβf(sinα)<sinαf(cosβ) |
| C.cosβf(sinα)>sinαf(cosβ) | D.cosβf(sinα)≥sinαf(cosβ) |
∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°-β)<sinα
∵可导函数f(x)满足xf'<f(x),
可以令g(x)=
,可得g′(x)=
<0,
g(x)为减函数,
∴g(sinα)<g(cosβ),
∴
<
,
∴cosβf(sinα)<sinαf(cosβ),
故选B;
∵可导函数f(x)满足xf'<f(x),
可以令g(x)=
| f(x) |
| x |
| xf′(x)-f(x) |
| x2 |
g(x)为减函数,
∴g(sinα)<g(cosβ),
∴
| f(sinα) |
| sinα |
| f(cosβ) |
| cosβ |
∴cosβf(sinα)<sinαf(cosβ),
故选B;
练习册系列答案
相关题目
已知sinβ=
,β为锐角,且sin(α+β)=cosα,则tan(α+β)=( )
| 3 |
| 5 |
| A、1 | ||
B、
| ||
| C、-2 | ||
| D、2 |
已知α,β,γ均为锐角,且tanα=
,tanβ=
,tanγ=
,则α,β,γ的和为( )
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 8 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知x,y为锐角,且满足cos x=
,cos(x+y)=
,则sin y的值是( )
| 4 |
| 5 |
| 3 |
| 5 |
A、
| ||
B、
| ||
C、
| ||
D、
|