题目内容

设函数f(x)=ax3+bx2+cx+2的导函数为f′(x),若f′(x)为奇函数,则有(  )
A.a≠0,c=0B.b=0C.a=0,c≠0D.a2+c2=0
函数f(x)=ax3+bx2+cx+2的导函数为f′(x)=3ax2+2bx+c,
∵函数f′(x)=3ax2+2bx+c是定义在R上的奇函数,
∴f'(x)=-f'(-x),即3ax2+2bx+c=-3ax2+2bx-+c,
∴3ax2+c恒成立,a=c=0.即a2+c2=0.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网