题目内容
已知数列{an}满足a1=22,an+1-an=2n,则数列{an}的通项公式为______,
的最小值为______.
| an |
| n |
由an+1-an=2n得,
an=an-1+2(n-1)
=[an-2+2(n-2)]+2(n-1)
=an-3+2(n-3)+2(n-2)+2(n-1)
=…
=a1+2×1+2×2+…+2(n-1)
=22+2×
=n2-n+22.
所以
=n+
-1
≥2
-1,等号成立时n=
?n=
,
又因为n为正整数,故n=5,
此时
=5+
-1=
.
故答案为:n2-n+22,
.
an=an-1+2(n-1)
=[an-2+2(n-2)]+2(n-1)
=an-3+2(n-3)+2(n-2)+2(n-1)
=…
=a1+2×1+2×2+…+2(n-1)
=22+2×
| [1+(n-1)](n-1) |
| 2 |
=n2-n+22.
所以
| an |
| n |
| 22 |
| n |
≥2
n•
|
| 22 |
| n |
| 22 |
又因为n为正整数,故n=5,
此时
| an |
| n |
| 22 |
| 5 |
| 42 |
| 5 |
故答案为:n2-n+22,
| 42 |
| 5 |
练习册系列答案
相关题目