题目内容
已知函数f(x)=log3
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,横坐标为
的点P满足2
=
+
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
)+f(
)+…+f(
),其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
| ||
| 1-x |
| 1 |
| 2 |
| OP |
| OM |
| ON |
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(Ⅲ)已知an=
|
(1)由已知可得,
=
(
+
),
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=log3
+log3
=log3(
•
)
=log3
=log3
=log3
=1.
(2)由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(
)+f(
)++f(
),
Sn=f(
)++f(
)+f(
),
相加得
2Sn=[f(
)+f(
)]+[(
)+f(
)]++[f(
)+f(
)]
=
=n-1
∴Sn=
.
(3)当n≥2时,
an=
=
=
=
-
.
又当n=1时,
a1=
=
-
.
∴an=
-
.
Tn=(
-
)+(
-
)+…+(
-
)=
.
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
=
=
∵n+
≥4,当且仅当n=2时,取“=”,
∴
≤
=
因此m>
.
综上可知,m的取值范围是(
,+∞).
| OP |
| 1 |
| 2 |
| OM |
| ON |
∴P是MN的中点,有x1+x2=1.
∴y1+y2=f(x1)+f(x2)
=log3
| ||
| 1-x1 |
| ||
| 1-x2 |
=log3(
| ||
| 1-x1 |
| ||
| 1-x2 |
=log3
| 3x1x2 |
| (1-x1)(1-x2) |
=log3
| 3x1x2 |
| 1-(x1+x2)+x1x2 |
=log3
| 3x1x2 |
| 1-1+x1x2 |
(2)由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1
Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
Sn=f(
| n-1 |
| n |
| 2 |
| n |
| 1 |
| n |
相加得
2Sn=[f(
| 1 |
| n |
| n-1 |
| n |
| 2 |
| n |
| n-2 |
| n |
| n-1 |
| n |
| 1 |
| n |
=
| ||
| (n-1)个1 |
=n-1
∴Sn=
| n-1 |
| 2 |
(3)当n≥2时,
an=
| 1 |
| 4(Sn+1)(Sn+1+1) |
| 1 | ||||
4×
|
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
又当n=1时,
a1=
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an=
| 1 |
| n+1 |
| 1 |
| n+2 |
Tn=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
由于Tn<m(Sn+1+1)对一切n∈N*都成立,
m>
| Tn |
| Sn+1+1 |
| n |
| (n+2)2 |
| 1 | ||
n+
|
∵n+
| 4 |
| n |
∴
| 1 | ||
n+
|
| 1 |
| 4+4 |
| 1 |
| 8 |
因此m>
| 1 |
| 8 |
综上可知,m的取值范围是(
| 1 |
| 8 |
练习册系列答案
相关题目