题目内容
设数列{an}的前n项和为Sn,且Sn=4an+2n+1 , n∈N*.
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn.
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn.
分析:(1)由Sn=4an+2n+1,可求得a1=-1;当n≥2时,an=Sn-Sn-1⇒3an+2=4an-1⇒3(an-2)=4(an-1-2),从而可证{an-2}是等比数列;
(2)由(1)知an=2-3×(
)n-1,令bn=nan,Tn=b1+b2+…+bn=2(1+2+3+…+n)-3[1×(
)0+2×(
)1+3×(
)2+…+n×(
)n-1],前者利用等差数列求和,后者利用错位相减法求和,再分别相加即可.
(2)由(1)知an=2-3×(
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
解答:解:(1)∵Sn=4an+2n+1,
∴S1=4a1+3,而S1=a1,
∴a1=-1;
当n≥2时,an=Sn-Sn-1
=(4an+2n+1)-[4an-1+2(n-1)+1]
=4an-4an-1+2,
∴3an+2=4an-1,
∴3an-6=4an-1-8,即3(an-2)=4(an-1-2),又a1-2=-3,
∴{an-2}是以-3为首项,公比为
等比数列.
∴an-2=-3×(
)n-1,
∴an=2-3×(
)n-1.
(2)∵an=2-3×(
)n-1,令bn=nan,
则bn=nan=2n-3n×(
)n-1,
∴Tn=b1+b2+…+bn
=2(1+2+3+…+n)-3[1×(
)0+2×(
)1+3×(
)2+…+n×(
)n-1].
令Cn=1×(
)0+2×(
)1+3×(
)2+…+n×(
)n-1①,
Cn=1×(
)1+2×(
)2+…+(n-1)×(
)n-1+n×(
)n②,
①-②得:-
Cn=(
)0+(
)1+(
)2+…+(
)n-1-n×(
)n
=
-n×(
)n
=-3(1-(
)n)-n×(
)n
=(3-n)×(
)n-3,
∴Cn=(3n-9)×(
)n+9.
∴Tn=2×
-3[(3n-9)×(
)n+9]
=-(9n-27)×(
)n+n2+n-27.
∴S1=4a1+3,而S1=a1,
∴a1=-1;
当n≥2时,an=Sn-Sn-1
=(4an+2n+1)-[4an-1+2(n-1)+1]
=4an-4an-1+2,
∴3an+2=4an-1,
∴3an-6=4an-1-8,即3(an-2)=4(an-1-2),又a1-2=-3,
∴{an-2}是以-3为首项,公比为
| 4 |
| 3 |
∴an-2=-3×(
| 4 |
| 3 |
∴an=2-3×(
| 4 |
| 3 |
(2)∵an=2-3×(
| 4 |
| 3 |
则bn=nan=2n-3n×(
| 4 |
| 3 |
∴Tn=b1+b2+…+bn
=2(1+2+3+…+n)-3[1×(
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
令Cn=1×(
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
①-②得:-
| 1 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
=
1-(
| ||
1-
|
| 4 |
| 3 |
=-3(1-(
| 4 |
| 3 |
| 4 |
| 3 |
=(3-n)×(
| 4 |
| 3 |
∴Cn=(3n-9)×(
| 4 |
| 3 |
∴Tn=2×
| n(1+n) |
| 2 |
| 4 |
| 3 |
=-(9n-27)×(
| 4 |
| 3 |
点评:本题考查数列的求和,着重考查等比关系的确定与其通项公式的应用,突出考查分组求和与错位相减法求和的综合应用,考查构造函数思想、转化思想与综合运算能力,属于难题.
练习册系列答案
相关题目