题目内容
在平面直角坐标系xoy中,抛物线y=x2上异于坐标原点O的两不同点A,B满足OA⊥OB,则直线AB必过定点
- A.(1,0)
- B.(0,1)
- C.(2,0)
- D.(0,2)
B
分析:设出AB的方程,A,B的坐标,进而把直线与抛物线方程联立消去y,根据韦达定理求得x1+x2和x1x2的表达式,进而利用抛物线方程求得y1y2=的表达式,进而根据AO⊥BO推断出x1x2+y1y2=0,求得b,即可求出结果.
解答:显然直线AB的斜率存在,记为k,AB的方程记为:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),将直线方程代入y=x2得:x2-kx-b=0,则有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,又y1=x12,y2=x22
∴y1y2=b2;
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,
∴直线AB比过定点(0,1)
故选B.
点评:本题主要考查了抛物线的简单性质,涉及到直线与圆锥线的问题一般是联立方程,设而不求,属于中档题.
分析:设出AB的方程,A,B的坐标,进而把直线与抛物线方程联立消去y,根据韦达定理求得x1+x2和x1x2的表达式,进而利用抛物线方程求得y1y2=的表达式,进而根据AO⊥BO推断出x1x2+y1y2=0,求得b,即可求出结果.
解答:显然直线AB的斜率存在,记为k,AB的方程记为:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),将直线方程代入y=x2得:x2-kx-b=0,则有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,又y1=x12,y2=x22
∴y1y2=b2;
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,
∴直线AB比过定点(0,1)
故选B.
点评:本题主要考查了抛物线的简单性质,涉及到直线与圆锥线的问题一般是联立方程,设而不求,属于中档题.
练习册系列答案
相关题目
在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、2 |