题目内容

已知函数f(x)=2sinωxcosωx-2数学公式sin2ωx+数学公式(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1-x2|的最小值为数学公式
(I)求ω的值;
(II)求函数f(x)的单调增区间;
(III)若f(a)=数学公式,求sin(数学公式π-4a)的值.

解:(I)∵f(x)=2sinωxcosωx-2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+
∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1-x2|的最小值为
∴函数的最小正周期为π

∴ω=1;
(II)由(I)知,f(x)=2sin(2x+
∴-+2kπ≤2x++2kπ,k∈Z
∴-+kπ≤x≤+kπ,k∈Z
∴函数f(x)的单调增区间为[-+kπ,+kπ],k∈Z;
(III)∵f(a)=,∴sin(2a+)=
∴sin(π-4a)=sin[-2(2a+)]=-cos[2(2a+)]=2sin2(2a+)-1=-
分析:(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1-x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;
(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;
(III)由f(a)=,可得sin(2a+)=,根据sin(π-4a)=sin[-2(2a+)]=-cos[2(2a+)]=2sin2(2a+)-1,即可求得结论.
点评:本题考查函数的周期性,考查函数解析式的确定,考查函数的单调性,考查学生的计算能力,周期确定函数解析式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网