题目内容
设数列{an}的前n项的和Sn=(1)求首项a1与通项an;
(2)设Tn=2nSn,n=1,2,3,…,证明
<
.
(1)解析:由Sn=
an-
×2n+1+
,n=1,2,3,…, ①
得a1=S1=
a1-
×4+
.
所以a1=2.
再由①有Sn-1=
an-1-
×2n+
,n=2,3,…, ②
将①和②相减得an=Sn-Sn-1=
(an-an-1)-
×(2n+1-2n),n=2,3,….
整理,得an+2n=4(an-1+2n-1),n=2,3,….
因而数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即an+2n=4×4n-1=4n,n=1,2,3,….
因而an=4n-2n,n=1,2,3,….
(2)证明:将an=4n-2n代入①得
Sn=
×(4n-2n)-
×2n+1+![]()
=
×(2n+1-1)(2n+1-2)
=
×(2n+1-1)(2n-1).
Tn=
×
=
×(
).
所以,
=![]()
![]()
练习册系列答案
相关题目