题目内容
(2013•和平区一模)已知数列{an}的前n项和Sn满足Sn=p(Sn-an)+
(p为大于0的常数),且a1是6a3与a2的等差中项.
(I)求数列{an}的通项公式;
(II)若an•bn=2n+1,求数列{bn}的前n项和Tn.
| 1 | 2 |
(I)求数列{an}的通项公式;
(II)若an•bn=2n+1,求数列{bn}的前n项和Tn.
分析:(I)当n≥2时,利用an=Sn-Sn-1即可得出an,n=1时单独考虑,再利用等比数列的通项公式即可得出;
(II)由(I)得bn=
=(2n+1)•2n,利用“错位相减法”即可得出其前n项和.
(II)由(I)得bn=
| 2n+1 |
| an |
解答:解:(I)当n=1时,a1=S1=p(S1-a1)+
,得a1=
.
当n≥2时,Sn=p(Sn-an)+
,
Sn-1=p(Sn-1-an-1)+
,
两式相减得an=pan-1,即
=p(p>0).
故{an}是首项为
,公比为p的等比数列,
∴an=
•pn-1.
由题意可得:2a1=6a3+a2,2×
=6×
p2+
p,
化为6p2+p-2=0.
解得p=
或-
(舍去).
∴an=
×(
)n-1=
.
(II)由(I)得bn=
=(2n+1)•2n,
则Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)×2n,
2Tn=3×22+5×23+…+(2n-1)×2n+(2n+1)×2n+1,
两式相减得-Tn=3×2+2×(22+23+…+2n)-(2n+1)×2n+1
=6+2×
-(2n+1)×2n+1
=-2-(2n-1)×2n+1,
∴Tn=2+(2n-1)×2n+1.
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,Sn=p(Sn-an)+
| 1 |
| 2 |
Sn-1=p(Sn-1-an-1)+
| 1 |
| 2 |
两式相减得an=pan-1,即
| an |
| an-1 |
故{an}是首项为
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
由题意可得:2a1=6a3+a2,2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
化为6p2+p-2=0.
解得p=
| 1 |
| 2 |
| 2 |
| 3 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
(II)由(I)得bn=
| 2n+1 |
| an |
则Tn=3×2+5×22+7×23+…+(2n-1)×2n-1+(2n+1)×2n,
2Tn=3×22+5×23+…+(2n-1)×2n+(2n+1)×2n+1,
两式相减得-Tn=3×2+2×(22+23+…+2n)-(2n+1)×2n+1
=6+2×
| 22-2n+1 |
| 1-2 |
=-2-(2n-1)×2n+1,
∴Tn=2+(2n-1)×2n+1.
点评:熟练掌握:当n≥2时,利用an=Sn-Sn-1,a1=S1;等比数列的通项公式,“错位相减法”是解题的关键.
练习册系列答案
相关题目