题目内容
若函数y=f(x)+cosx在[-
,
]上单调递减,则f(x)可以是( )
| π |
| 4 |
| 3π |
| 4 |
| A.1 | B.cosx | C.-sinx | D.sinx |
代入验证:A,y=1+cosx在[-
,0]上单调递增,[0,
]上单调递减,故错误;
B,y=2cosx在[-
,0]上单调递增,[0,
]上单调递减,故错误;
C,y=-sinx+cosx=cos(x+
),由x+
∈[0,π],可得x∈[-
,
],
故函数在[-
,
]上单调递减,故正确;
D,y=sinx+cosx=cos(x-
),由x-
∈[0,π],可得x∈[
,
],
故函数在[
,
]上单调递减,故错误.
故选C
| π |
| 4 |
| 3π |
| 4 |
B,y=2cosx在[-
| π |
| 4 |
| 3π |
| 4 |
C,y=-sinx+cosx=cos(x+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
故函数在[-
| π |
| 4 |
| 3π |
| 4 |
D,y=sinx+cosx=cos(x-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
故函数在[
| π |
| 4 |
| 5π |
| 4 |
故选C
练习册系列答案
相关题目