题目内容

已知数列{an}满足a1=2,an+1=2(1+
1
n
2an,n∈N*
(1)求数列{an}的通项;
(2)设bn=
an
n
,求
n




i=1
bi

(3)设cn=
n
an
,求证
n




i=1
Ci
17
24
(1)由已知得,
an+1
(n+1)2
=  2•
an
n2

{
an
n2
}
是公比为2的等比数列,首项a1=2,
an
n2
=2n
∴an=n22n
(2)bn=
an
n
=n2n
n








i=1
bi
=1•2+2•22+3•23+…+n2n
2
n








i=1
bi
=1•22+2•23+3•24+…+(n-1)2n+n2n+1
∴-
n








i=1
bi
=2+22+23+…+2n-n2n+1=
2(1-2n)
1-2
-n2n+1
n








i=1
bi
=(n-1)2n+1+2;

(3)cn=
n
an
=
1
n2n

当n≥2时,
1
n2n
=
n-1
n(n-1)2n
< 
n+1
n(n-1)2n
=
1
(n-1)2n-1
1
n2n

∴c1+c2+c3+…+cn=
1
2
+
1
8
+
1
24
+…+
1
n2n

1
2
+
1
8
+
1
24
+
1
3•23
-
1
4•24
…+
1
(n-1)2n-1
-
1
n2n
17
24
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网