题目内容
已知数列{an}满足a1=2,an+1=2(1+
)2an,n∈N*.
(1)求数列{an}的通项;
(2)设bn=
,求
bi;
(3)设cn=
,求证
Ci<
.
| 1 |
| n |
(1)求数列{an}的通项;
(2)设bn=
| an |
| n |
| n |
| i=1 |
(3)设cn=
| n |
| an |
| n |
| i=1 |
| 17 |
| 24 |
(1)由已知得,
= 2•
,
∴{
}是公比为2的等比数列,首项a1=2,
∴
=2n,
∴an=n22n;
(2)bn=
=n2n,
bi=1•2+2•22+3•23+…+n2n,
2
bi=1•22+2•23+3•24+…+(n-1)2n+n2n+1,
∴-
bi=2+22+23+…+2n-n2n+1=
-n2n+1
∴
bi=(n-1)2n+1+2;
(3)cn=
=
,
当n≥2时,
=
<
=
-
∴c1+c2+c3+…+cn=
+
+
+…+
<
+
+
+
-
…+
-
<
.
| an+1 |
| (n+1)2 |
| an |
| n2 |
∴{
| an |
| n2 |
∴
| an |
| n2 |
∴an=n22n;
(2)bn=
| an |
| n |
| n |
| i=1 |
2
| n |
| i=1 |
∴-
| n |
| i=1 |
| 2(1-2n) |
| 1-2 |
∴
| n |
| i=1 |
(3)cn=
| n |
| an |
| 1 |
| n2n |
当n≥2时,
| 1 |
| n2n |
| n-1 |
| n(n-1)2n |
| n+1 |
| n(n-1)2n |
| 1 |
| (n-1)2n-1 |
| 1 |
| n2n |
∴c1+c2+c3+…+cn=
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 24 |
| 1 |
| n2n |
<
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 24 |
| 1 |
| 3•23 |
| 1 |
| 4•24 |
| 1 |
| (n-1)2n-1 |
| 1 |
| n2n |
| 17 |
| 24 |
练习册系列答案
相关题目