题目内容
已知数列{an}的前n项和为Sn,且对任意n∈N*,有n,an,Sn成等差数列.
(Ⅰ)记数列bn=an+1(n∈N*),求证:数列{bn}是等比数列.
(Ⅱ)数列{an}的前n项和为Tn,求满足
<
<
的所有n的值.
(Ⅰ)记数列bn=an+1(n∈N*),求证:数列{bn}是等比数列.
(Ⅱ)数列{an}的前n项和为Tn,求满足
| 1 |
| 17 |
| Tn+n+2 |
| T2n+2n+2 |
| 1 |
| 7 |
(Ⅰ)证明:Sn=2an-n,Sn+1=2an+1-(n+1)?an+1=2an+1-2an-1?an+1=2an+1,
| bn+1 |
| bn |
| an+1+1 |
| an+1 |
| 2an+2 |
| an+1 |
又由S1=a1=2a1-1?a1=1
所以数列{bn}是首项为2,公比为2的等比数列.
(Ⅱ)bn=an+1=2n,an=2n-1,
可以得出Tn=2n+1-n-2,
从而
| 1 |
| 17 |
| Tn+n+2 |
| T2n+2n+2 |
| 1 |
| 2 |
| 1 |
| 7 |
所以n的值为3,4.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |