题目内容
【题目】2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
年龄 |
|
|
|
|
|
|
受访人数 | 5 | 6 | 15 | 9 | 10 | 5 |
支持发展共享单车人数 | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上统计数据填写下面的
列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:
年龄低于35岁 | 年龄不低于35岁 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(Ⅱ)若对年龄在
的被调查人中随机选取两人,对年龄在
的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
【答案】(Ⅰ)不能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;(Ⅱ)
.
【解析】试题分析:(1)将数据代入
,计算出
,与参考数据比较得出结论:不能,(2)年龄在
的被调查人共5个,利用枚举法得到随机选取两人的总事件数共10个.其中有4人支持,1人不支持发展共享单车,选出恰好这两人都支持的事件数,最后根据古典概型概率公式求解.
试题解析:解:(Ⅰ)根据所给数据得到如下
列联表:
年龄低于35岁 | 年龄不低于35岁 | 合计 | |
支持 | 30 | 10 | 40 |
不支持 | 5 | 5 | 10 |
合计 | 35 | 15 | 50 |
根据
列联表中的数据,得到
的观测值为
.
∴不能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系.
(Ⅱ)“对年龄在
的被调查人中随机选取两人进行调查,恰好这两人都支持发展共享单车”记为事件
,
对年龄在
的5个受访人中,有4人支持,1人不支持发展共享单车,分别记为
.则从这5人中随机抽取2人的基本事件为:
,
,
img src="https://thumb.zyjl.cn/Upload/2017/12/29/14/2a74aad1/SYS201712291400000260820553_DA/SYS201712291400000260820553_DA.015.png" width="108" height="27" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
.共10个.
其中,恰好抽取的两人都支持发展共享单车的基本事件包含
.共6个.
∴
.
∴对年龄在
的被调查人中随机选取两人进行调查,恰好这两人都支持发展共享单车的概率是
.