题目内容
已知数列{an}满足a1=-1,an+1=
,数列{bn}满足bn=
(1)求证:数列{
}为等比数列,并求数列{an}的通项公式.
(2)求证:当n≥2时,bn+1+bn+2+…+b2n<
-
(3)设数列{bn}的前n项和为{sn},求证:当n≥2时,sn2>2(
+
+…+
).
| (3n+3)an+4n+6 |
| n |
| 3n-1 |
| an+2 |
(1)求证:数列{
| an+2 |
| n |
(2)求证:当n≥2时,bn+1+bn+2+…+b2n<
| 4 |
| 5 |
| 1 |
| 2n+1 |
(3)设数列{bn}的前n项和为{sn},求证:当n≥2时,sn2>2(
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
(1)由题意
=3
+
-
,即
=3
∴an=n•3n-1-2…(4分)
(2)当n=2时,b3+b4=
+
<
-
即n=2时命题成立
假设n=k(k≥2)时命题成立,即
+
+…+
<
-
当n=k+1时,
+
+…+
+
+
<
-
-
+
+
=
-
<
-
即n=k+1时命题也成立
综上,对于任意n≥2,bn+1+bn+2+…+b2n<
-
…(8分)
(3)bn=
当n≥2时,bn=sn-sn-1=
,即sn-
=sn-1
平方则sn2-
+
=sn-12∴sn2-sn-12=
-
叠加得sn2-1=2(
+
+…+
)-(
+
+…+
)
∴sn2=2(
+
+…+
)+1-(
+…+
)
∴sn2>2(
+
+…+
)…(13分)
| an+1 |
| n+1 |
| an |
| n |
| 6 |
| n |
| 2 |
| n+1 |
| an+1+2 |
| n+1 |
| an+2 |
| n |
∴an=n•3n-1-2…(4分)
(2)当n=2时,b3+b4=
| 1 |
| 3 |
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
假设n=k(k≥2)时命题成立,即
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 4 |
| 5 |
| 1 |
| 2k+1 |
当n=k+1时,
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 4 |
| 5 |
| 1 |
| 2k+1 |
| 1 |
| k+1 |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
=
| 4 |
| 5 |
| 1 |
| 2k+2 |
| 4 |
| 5 |
| 1 |
| 2k+3 |
综上,对于任意n≥2,bn+1+bn+2+…+b2n<
| 4 |
| 5 |
| 1 |
| 2n+1 |
(3)bn=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
平方则sn2-
| 2sn |
| n |
| 1 |
| n2 |
| 2sn |
| n |
| 1 |
| n2 |
叠加得sn2-1=2(
| sn |
| 2 |
| sn |
| 3 |
| sn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
∴sn2=2(
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
| 1 |
| 22 |
| 1 |
| n2 |
∴sn2>2(
| s2 |
| 2 |
| s3 |
| 3 |
| sn |
| n |
练习册系列答案
相关题目