题目内容
已知数列{an}的通项公式是an=1-
,其前n项和Sn=
,则项数n=______.
| 1 |
| 2n |
| 321 |
| 64 |
∵an=1-
,
∴Sn=(1-
)+(1-
)+…+(1-
)
=(1+1+…+1)-(
-
-…-
)
=n-
=n-1+
令n-1+
=
,解之可得n=6
故答案为:6
| 1 |
| 2n |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=(1+1+…+1)-(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=n-
| ||||
1-
|
| 1 |
| 2n |
令n-1+
| 1 |
| 2n |
| 321 |
| 64 |
故答案为:6
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|