题目内容
已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,a≠0,a≠1).(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,cn=
| 1 |
| an+1 |
| 1 |
| an+1-1 |
| 1 |
| 2 |
分析:(Ⅰ)由题意知a1=a,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),由此可知an=a•an-1,
=a,所以an=a•an-1=an.
(Ⅱ)由题意知a≠1,bn=(an)2+
an,bn=
,由此可解得a=
.
(Ⅲ)证明:由题意知bn=(
)n,所以cn=
-
=2-
+
,由此可知Tn>2n-
.
| an |
| an-1 |
(Ⅱ)由题意知a≠1,bn=(an)2+
| a(an-1) |
| a-1 |
| (2a-1)a2n-aan |
| a-1 |
| 1 |
| 2 |
(Ⅲ)证明:由题意知bn=(
| 1 |
| 2 |
| 1 | ||
(
|
| 1 | ||
(
|
| 1 |
| 2n+1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2 |
解答:解:(Ⅰ)S1=a(S1-a1+1)
∴a1=a,.(1分)
当n≥2时,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),
两式相减得:an=a•an-1,
=a
(a≠0,n≥2)即{an}是等比数列.
∴an=a•an-1=an;(4分)
(Ⅱ)由(Ⅰ)知a≠1,
bn=(an)2+
an,bn=
,
若{bn}为等比数列,则有b22=b1b3,
而b1=2a2,b2=a3(2a+1),b3=a4(2a2+a+1)(6分)
故[a3(2a+1)]2=2a2•a4(2a2+a+1),解得a=
,(7分)
再将a=
代入得bn=(
)n成立,所以a=
.(8分)
(Ⅲ)证明:由(Ⅱ)知bn=(
)n,
所以cn=
-
=
+
=2-
+
(10分)
所以cn>2-
+
Tn=c1+c2++cn>(2-
+
)+(2-
+
)++(2-
+
)
=2n-
+
>2n-
(12分)
∴a1=a,.(1分)
当n≥2时,Sn=a(Sn-an+1),Sn-1=a(Sn-1-an-1+1),
两式相减得:an=a•an-1,
| an |
| an-1 |
(a≠0,n≥2)即{an}是等比数列.
∴an=a•an-1=an;(4分)
(Ⅱ)由(Ⅰ)知a≠1,
bn=(an)2+
| a(an-1) |
| a-1 |
| (2a-1)a2n-aan |
| a-1 |
若{bn}为等比数列,则有b22=b1b3,
而b1=2a2,b2=a3(2a+1),b3=a4(2a2+a+1)(6分)
故[a3(2a+1)]2=2a2•a4(2a2+a+1),解得a=
| 1 |
| 2 |
再将a=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅲ)证明:由(Ⅱ)知bn=(
| 1 |
| 2 |
所以cn=
| 1 | ||
(
|
| 1 | ||
(
|
| 2n |
| 2n+1 |
| 2n+1 |
| 2n+1-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1-1 |
所以cn>2-
| 1 |
| 2n |
| 1 |
| 2n+1 |
Tn=c1+c2++cn>(2-
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
=2n-
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
点评:本题考查数列知识的综合应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |