题目内容
【题目】已知函数f(x)=
cos4x+2sinxcosx﹣
sin4x.
(1)当x∈[0,
]时,求f(x)的最大值、最小值以及取得最值时的x值;
(2)设g(x)=3﹣2m+mcos(2x﹣
)(m>0),若对于任意x1∈[0,
],都存在x2∈[0,
],使得f(x1)=g(x2)成立,求实数m的取值范围.
【答案】
(1)解: ![]()
∵
∴
∴
,f(x)max=2∴
, ![]()
综上所述:
,f(x)max=2;
, ![]()
(2)解:∵
∴
,∴
即f(x1)∈[1,2],
,∴
,∴
,
又∵m>0,∴ ![]()
因为对于任意
,都存在
,使得f(x1)=g(x2)成立
∴
,
∴m∈Φ
【解析】(1)利用两角和与差的三角函数化简函数的解析式,通过x的范围,结合正弦函数的有界性求解即可.(2)通过任意x1∈[0,
],存在x2∈[0,
],求出两个函数的值域,列出不等式组
,求解m的范围即可.
【考点精析】认真审题,首先需要了解三角函数的最值(函数
,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
).
【题目】春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:
天数x(天) | 3 | 5 | 7 | 9 | 11 | 13 | 15 |
日经济收入Q(万元) | 154 | 180 | 198 | 208 | 210 | 204 | 190 |
(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.