题目内容
已知函数f(x)=ex-x(e为自然对数的底数).
(1)求函数f(x)的最小值;
(2)若n∈N*,证明:(
)n+(
)n+…+(
)n+(
)n<
.
(1)求函数f(x)的最小值;
(2)若n∈N*,证明:(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
| e |
| e-1 |
(1)∵f(x)=ex-x,∴f'(x)=ex-1,令f'(x)=0,得x=0.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.∴函数f(x)=ex-x在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增.∴当x=0时,f(x)有最小值1.
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.令x=-
(n∈N*,k=1,2,,n-1),
则 0<1-
≤e-
,∴(1-
)n≤(e-
)n=e-k(k=1,2,,n-1).
即(
)n≤e-k(k=1,2,,n-1).∵(
)n=1,
∴(
)n+(
)n+…+(
)n+(
)n≤e-(n-1)+e-(n-2)+… .+e-2+e-1+1.
∵e-(n-1)+e-(n-2)+…+e-2+e-1+1=
<
=
,
∴(
)n+(
)n+…+(
)n+(
)n<
.
∴当x>0时,f'(x)>0,当x<0时,f'(x)<0.∴函数f(x)=ex-x在区间(-∞,0)上单调递减,
在区间(0,+∞)上单调递增.∴当x=0时,f(x)有最小值1.
(2)证明:由(1)知,对任意实数x均有ex-x≥1,即1+x≤ex.令x=-
| k |
| n |
则 0<1-
| k |
| n |
| k |
| n |
| k |
| n |
| k |
| n |
即(
| n-k |
| n |
| n |
| n |
∴(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
∵e-(n-1)+e-(n-2)+…+e-2+e-1+1=
| 1-e-n |
| 1-e-1 |
| 1 |
| 1-e-1 |
| e |
| e-1 |
∴(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n |
| n |
| e |
| e-1 |
练习册系列答案
相关题目