题目内容

设数列{an}的前n项和为Sn,对一切n∈N*,点都在函数的图象上.

(1)求a1,a2,a3的值,并求通项an

(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;

(3)设An为数列的前n项积,是否存在实数a,使得不等式对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.

答案:
解析:

  (1)an=2n

  (2)2010

  (3)


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网