题目内容

6.已知数列{an}满足an+2-an+1=an+1-an,n∈N*,且a5=$\frac{π}{2}$若函数f(x)=sin2x-2sin2$\frac{x}{2}$,记yn=f(an)则数列{yn}的前9项和为-9.

分析 由已知递推式得到数列{an}为等差数列,再由a5=$\frac{π}{2}$得到a1+a9=a2+a8=a3+a7=a4+a6=2a5=π,利用二倍角余弦把f(x)化简,由三角函数的和差化积求得答案.

解答 解:∵数列{an}满足an+2-an+1=an+1-an,n∈N*
∴数列{an}是等差数列,
∵a5=$\frac{π}{2}$,∴a1+a9=a2+a8=a3+a7=a4+a6=2a5=π,
∵f(x)=sin2x-2sin2$\frac{x}{2}$,
∴f(x)=sin2x+cosx-1,
∴f(a1)+f(a9)=sin2a1+cosa1-1+sin2a9+cosa9-1
=2sin(a1+a9)cos(a1-a9)+2$cos\frac{{a}_{1}+{a}_{9}}{2}cos\frac{{a}_{1}-{a}_{9}}{2}$-2
=2sinπ•cos(a1-a9)+2cos$\frac{π}{2}$cos$\frac{{a}_{1}-{a}_{9}}{2}$-2=-2.
同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=-2
∵f(a5)=-1,
∴数列{yn}的前9项和为-9.
故答案为:-9.

点评 本题考查了等差关系的确定,考查了二倍角余弦公式的应用,训练了三角函数值的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网