题目内容
数列{an}中,a1=
,an=an-1+
(n≥2,n∈N*),则数列{an}的通项公式an=
.
| 1 |
| 2 |
| 1 |
| n2+n |
| n |
| n+1 |
| n |
| n+1 |
分析:根据数列递推式,利用裂项法,可求数列{an}的通项公式.
解答:解:∵an=an-1+
,
∴an-an-1=
=
-
∴an-a1=
-
+
-
+…+
-
∴an-a1=
-
∵a1=
∴an=1-
=
故答案为:
| 1 |
| n2+n |
∴an-an-1=
| 1 |
| n2+n |
| 1 |
| n |
| 1 |
| n+1 |
∴an-a1=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴an-a1=
| 1 |
| 2 |
| 1 |
| n+1 |
∵a1=
| 1 |
| 2 |
∴an=1-
| 1 |
| n+1 |
| n |
| n+1 |
故答案为:
| n |
| n+1 |
点评:本题考查数列递推式,考查裂项法的运用,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|