题目内容
(1)已知等差数列{an},bn=
(n∈N*),求证:{bn}仍为等差数列;
(2)已知等比数列{cn},cn>0(n∈N*)),类比上述性质,写出一个真命题并加以证明.
| a1+a2+a3+…+an | n |
(2)已知等比数列{cn},cn>0(n∈N*)),类比上述性质,写出一个真命题并加以证明.
分析:(1)由求和公式可得bn=
=
,进而可得bn+1-bn为常数,可判为等差数列;
(2)类比命题:若{cn}为等比数列,cn>0,(n∈N*),dn=
,则{dn}为等比数列,只需证明
为常数即可.
| ||
| n |
| a1+an |
| 2 |
(2)类比命题:若{cn}为等比数列,cn>0,(n∈N*),dn=
| n | c1•c2…cn |
| dn+1 |
| dn |
解答:解:(1)由题意可知bn=
=
,
∴bn+1-bn=
-
=
,
∵{an}等差数列,∴bn+1-bn=
=
为常数,(d为公差)
∴{bn}仍为等差数列;
(2)类比命题:若{cn}为等比数列,cn>0,(n∈N*),
dn=
,则{dn}为等比数列,
证明:由等比数列的性质可得:dn=
=
,
故
=
=
为常数,(q为公比)
故{dn}为等比数列
| ||
| n |
| a1+an |
| 2 |
∴bn+1-bn=
| a1+an+1 |
| 2 |
| a1+an |
| 2 |
| an+1-an |
| 2 |
∵{an}等差数列,∴bn+1-bn=
| an+1-an |
| 2 |
| d |
| 2 |
∴{bn}仍为等差数列;
(2)类比命题:若{cn}为等比数列,cn>0,(n∈N*),
dn=
| n | c1•c2…cn |
证明:由等比数列的性质可得:dn=
| n | (c1cn)
| ||
| c1cn |
故
| dn+1 |
| dn |
|
| q |
故{dn}为等比数列
点评:本题考查等差数列的定义,涉及类比推理和等比数列的定义,属中档题.
练习册系列答案
相关题目